Prediction of Tautomeric Equilibria for \boldsymbol{N}-Arylamidines

Ewa D. Raczyńska*
Department of Chemistry, University, 02-093 Warsaw, Poland

Abstract

The influence of substitution at amidine nitrogen atom on tautomeric equilibria and basicities of \boldsymbol{N}-arylamidines is discussed. It is shown that tautomeric equilibrium constants (as $\mathrm{p} K_{T}$) can be correlated with σ° substituent constants, but measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ values of tautomeric mixture should obey a non-linear relation with σ° constants. The methods of prediction of $\mathrm{p} K_{T}$ value are proposed, and applied to N-arylformamidines and acetamidines.

The possibility of predicting tautomeric equilibrium constants as well as $\mathrm{p} K_{\mathrm{a}}$ values of organic compounds, particulary those which are biologically active, is for several reasons an important question in organic chemistry. ${ }^{1}$

In the case of compounds containing an amidine group $(-\mathrm{N}=\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{N}<)$, unsubstituted, N-monosubstituted, and N, N^{\prime} disubstituted amidines all display prototropic tautomerism, and the tautomeric equilibrium depends on the effects of the substituents at the nitrogen atoms. ${ }^{2-4}$ In the previous paper, ${ }^{5}$ which concerned unsymmetrically and symmetrically $N, N^{\prime}-$ disubstituted amidines, it was shown that the application of correlation analysis methods to the study of tautomeric and acid-base equilibria has led to the prediction of both the $\mathrm{p} K_{\mathrm{T}}$ values and the $\mathrm{p} K_{\mathrm{a}}$ values of individual tautomers. In the case of N-monosubstituted amidines, only Katritzky et al. ${ }^{6.7}$ have determined $\mathrm{p} K_{\mathrm{T}}$ values for several N-monosubstituted acetamidines, and have discussed the substituent effect on $\mathrm{p} K_{\mathrm{T}}$, but they did not report any attempts to find a quantitative relationship between structural parameters and tautomeric equilibria.
$\mathrm{p} K_{a}$ of N -Arylamidines.-It is well known that the protonation of tautomerizing N -monosubstituted amidine yields only one amidinium cation, which as the conjugate acid (BH^{+}) of both tautomeric bases (B_{1} and B_{2}) in the solvent S dissociates as shown in the Scheme.

According to Brönsted theory, ${ }^{8}$ the measured (called macroscopic) dissociation constant $K_{\mathrm{a}_{\mathrm{m}}}$, defined as $K_{\mathrm{a}_{\mathrm{m}}}=\left[\left(\mathrm{B}_{1}\right)+\right.$ $\left.\left(\mathrm{B}_{2}\right)\right]\left(\mathrm{SH}^{+}\right) /\left(\mathrm{BH}^{+}\right)$, is the sum of microscopic constants $K_{\mathrm{a}_{1}}$ and $K_{\mathrm{a}_{2}}$.

$$
\begin{equation*}
K_{\mathrm{a}_{\mathrm{m}}}=K_{\mathrm{a}_{1}}+K_{\mathrm{a}_{2}} \tag{1}
\end{equation*}
$$

For unsubstituted amidines, where $R_{\mathrm{x}}=\mathrm{H}$, both microscopic constants are identical ($K_{\mathrm{a}_{1}}=K_{\mathrm{a}_{2}}=K_{\mathrm{a}_{\mathrm{R}}}$), and thus the measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ can be expressed as

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}=\mathrm{p} K_{\mathrm{a}_{11}}-\log 2 \tag{2}
\end{equation*}
$$

If the $\mathrm{p} K_{\mathrm{a}}$ value of one of the tautomers is negligible with respect to the $\mathrm{p} K_{\mathrm{a}}$ of the second one, the measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ value is approximately equivalent to the $\mathrm{p} K_{\mathrm{a}}$ value of the less basic tautomer (e.g. if $K_{\mathrm{a}_{1}} \gg K_{\mathrm{a}_{2}}$ then $K_{\mathrm{a}_{\mathrm{m}}} \cong K_{\mathrm{a}_{1}}$ and $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}} \cong \mathrm{p} K_{\mathrm{a}_{1}}$).

Systematic studies ${ }^{9}$ on the influence of substitution at both nitrogen atoms on the basicity of N^{1}, N^{1}, N^{2}-trisubstituted amidines have led to the derivation of some general equations enabling the prediction of the $\mathrm{p} K_{\mathrm{a}}$ value of any amidine in ethanol. It was found ${ }^{9}$ that the $\mathrm{p} K_{\mathrm{a}}$ of amidines can be pre-

[^0]
dicted with satisfactory accuracy (error <0.3 units of $\mathrm{p} K_{\mathrm{a}}$) on the basis of equation (3) where $\Delta \mathrm{p} K_{\mathrm{ap}}$ and $\Delta \mathrm{p} K_{\mathrm{as}_{\wedge}}$ are the differences in the $\mathrm{p} K_{\mathrm{a}}$ of the primary $\mathrm{R}_{\mathrm{x}} \mathrm{NH}_{2}$ and PhNH_{2}, and of the secondary $\mathrm{R}_{\mathbf{y}} \mathrm{R}_{\mathbf{z}} \mathrm{NH}$ and MePhNH amines, respectively.
\[

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{\mathrm{o}}+x_{\mathrm{Im}} \Delta \mathrm{p} K_{\mathrm{apA}}+\alpha_{\mathrm{Am}} \Delta \mathrm{p} K_{\mathrm{a} \mathrm{~s} \wedge} \tag{3}
\end{equation*}
$$

\]

Equation (3) for symmetrically N, N^{\prime}-disubstituted tautomerizing amidines gives equation (4):

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{\mathrm{o}}+\left(\alpha_{\mathrm{lm}}+\alpha_{\mathrm{Am}}\right) \Delta \mathrm{p} K_{\mathrm{a} \mathrm{p}} \tag{4}
\end{equation*}
$$

It was also shown ${ }^{9}$ that the basicity of amidines containing different types of substituents at the nitrogen atom can be predicted on the basis of substituent constants expressed on the uniform scale σ°, mentioned in references 10 and 11 , and the Hammett equation (5):

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{a}}^{\mathrm{o}}-\rho_{\mathrm{i}} \sigma_{\mathrm{i}}^{\circ} \tag{5}
\end{equation*}
$$

On this basis it can be assumed that in the case of N-arylamidines ($\mathrm{R}_{\mathrm{x}}=m$ - or $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}$) the $\mathrm{p} K_{\mathrm{a}}$ values of both tautomers B_{1} and B_{2} should obey equations (6) and (7), respectively, where $\mathrm{p} K_{\mathrm{a}_{1}}^{\mathrm{o}}$ and $\mathrm{p} K_{\mathrm{a}_{2}}^{\mathrm{o}}$ are the microscopic $\mathrm{p} K_{\mathrm{a}}$ values of amidines containing an unsubstituted phenyl ring at the imino. or the amino nitrogen atom, respectively.

$$
\begin{align*}
& \mathrm{p} K_{\mathrm{a}_{1}}=\mathrm{p} K_{\mathrm{a}_{1}}^{\mathrm{o}}-\rho_{\mathrm{lm}} \sigma_{\mathrm{x}}^{\mathrm{o}} \tag{6}\\
& \mathrm{p} K_{\mathrm{a}_{2}}=\mathrm{p} K_{\mathrm{a}_{2}}^{\mathrm{o}}-\rho_{\mathrm{Am}} \sigma_{\mathrm{x}}^{\mathrm{o}} \tag{7}
\end{align*}
$$

On the plot (Figure) the $\mathrm{p} K_{\mathrm{a}}$ values of the tautomers B_{1} and B_{2} are represented by the two intersecting straight lines 1 and 2, respectively. The intersection point of these lines refers to the microscopic $\mathrm{p} K_{\mathrm{a}_{\mu}}$ value of unsubstituted amidine where $\mathrm{R}_{\mathrm{x}}=$

H , and can be obtained, according to equation (2), by direct measurements of the $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ value of the unsubstituted amidine.
The relationship for the prediction of measured $\mathrm{p} K_{\mathrm{a}_{m}}$ values of N-arylamidines is obtained by replacing $K_{\mathrm{a}_{1}}$ and $K_{\mathrm{a}_{2}}$ in equation (1) by the terms obtained from equations (6) and (7).

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}=-\log \left[K_{\mathrm{a}_{1}}^{\circ} 10^{\rho_{\mathrm{o}} \mathrm{o}_{\mathrm{x}}^{\circ}}+K_{\mathrm{a}_{2}}^{\circ} 10^{\rho_{\Lambda_{m} \mathrm{o}_{\mathrm{x}}^{\circ}}^{\circ}}\right] \tag{8}
\end{equation*}
$$

Using the uniform scale of σ° constants the equations (6)-(8) can be modified as follows. The $\mathrm{p} K_{\mathrm{a}}$ of both tautomers should obey equations (9) and (10), respectively, where $\sigma_{\mathrm{H}}^{\circ}$ is the σ° constant of hydrogen atoms in the uniform scale σ°.

$$
\begin{align*}
& \mathrm{p} K_{\mathrm{a}_{1}}=\mathrm{p} K_{\mathrm{a}_{\mathbf{H}}}-\rho_{\mathrm{lm}}\left(\sigma_{\mathbf{x}}^{\circ}-\sigma_{\mathbf{H}}^{\circ}\right) \tag{9}\\
& \mathrm{p} K_{\mathrm{a}_{2}}=\mathrm{p} K_{\mathrm{a}_{\mathrm{H}}}-\rho_{\mathrm{Am}}\left(\sigma_{\mathrm{x}}^{\mathrm{o}}-\sigma_{\mathbf{H}}^{\circ}\right) \tag{10}
\end{align*}
$$

By a similar procedure to that used for equation (8), the relationship for the prediction of $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ value of any N-monosubstituted amidine is obtained.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}=\mathrm{p} K_{\mathrm{a}_{\mathrm{H}}}-\log \left[10^{\rho_{\mathrm{m}}\left(\rho_{\mathrm{x}}^{\circ}-\sigma_{\mathrm{H}}^{\mathrm{o}}\right)}+10^{\rho_{\Lambda_{\mathrm{m}}}\left(\sigma_{\mathrm{x}}^{\circ}-\sigma_{\mathrm{H}}^{\circ}\right)}\right] \tag{11}
\end{equation*}
$$

On the Figure the measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ values are represented by the curve m ; two asymptotes overlap with the straight lines 1 and 2 , and m passes below the intersection point of these lines at a distance equal to $\log 2$ [according to equation (2)].

As ρ_{Im} is different from $\rho_{\mathrm{Am}},{ }^{9.12-14}$ the relationship between $\mathrm{p} K_{\mathrm{m}}$ and σ^{o} constants cannot be treated as a straight-line equation. For this reason, the conclusion reported in several papers, ${ }^{15.16}$ and even in a monograph, ${ }^{17}$ maintaining that the measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ values of N-monosubstituted amidines obey the Hammett equation, is incorrect, since an erroneous assumption was made.
$\mathrm{p} K_{T}$ of N -Arylamidines.-The tautomeric equilibrium constant, defined as $\mathrm{p} K_{\mathrm{T}}=-\log \left(\mathrm{B}_{1}\right) /\left(\mathrm{B}_{2}\right)$, is determined by the difference in the $\mathrm{p} K_{\mathrm{a}}$ values of both tautomers.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{T}}=\mathrm{p} K_{\mathrm{a}_{1}}-\mathrm{p} K_{\mathrm{a}_{2}} \tag{12}
\end{equation*}
$$

For an unsubstituted amidine where $\mathbf{R}_{\mathbf{x}}=\mathbf{H}$, the $\mathrm{p} K_{\mathrm{T}}$ is equal to 0 .
Tautomerization of amidine is a very fast reaction. ${ }^{18.19}$ For this reason the microscopic constants ($\mathrm{p} K_{\mathrm{a}_{1}}$ and $\mathrm{p} K_{\mathrm{a}_{2}}$) of single tautomers, and thus the $\mathrm{p} K_{\mathrm{T}}$ value, are not experimentally accessible. However, the $\mathrm{p} K_{\mathrm{T}}$ values can be estimated by application of the basicity method on the basis of some general equations between $\mathrm{p} K_{\mathrm{T}}$ and parameters of structure, or on the basis of the $\mathrm{p} K_{\mathrm{a}}$ values of certain model compounds.
The relationship between $\mathrm{p} K_{\mathrm{T}}$ and substituent constants can be derived from equations (6), (7), and (12). After rearrangement the Hammett equation (13) is obtained, where $\mathrm{p} K_{\mathrm{T}}^{0}=$ $\mathrm{p} K_{\mathrm{a}_{1}}^{0}-\mathrm{p} K_{\mathrm{a}_{2}}^{\mathrm{o}}$ and $\rho_{\mathrm{T}}=\rho_{\mathrm{Im}}-\rho_{\mathrm{Am}}$.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{T}}=\mathrm{p} K_{\mathrm{T}}^{\mathrm{o}}-\rho_{\mathrm{T}} \sigma_{\mathrm{x}}^{\circ} \tag{13}
\end{equation*}
$$

On uniform scale of σ° constants the relationship (13) can be expressed as follows:

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{T}}=-\rho_{\mathrm{T}}\left(\sigma_{\mathrm{X}}^{\mathrm{o}}-\sigma_{\mathrm{H}}^{\mathrm{o}}\right) \tag{14}
\end{equation*}
$$

Figure. Plot of $\mathrm{p} K_{\mathrm{a}}$ vs. $\sigma_{\mathrm{x}}^{\mathrm{o}}$ for N -monosubstituted amidines. Calculation of $\mathrm{p} K_{\mathrm{T}}$ on the basis of the $\mathrm{p} K_{\mathrm{a}}$ values of 4 model derivatives: $\mathrm{B}_{1}^{\prime}, \mathrm{B}_{2}^{\prime}$, $\mathrm{B}_{1}^{\prime \prime}$, and $\mathrm{B}_{2}^{\prime \prime}$ [equation (15)].

Equation (14) has the advantage that it contains neither $\mathrm{p} K_{\mathrm{T}}^{\mathrm{o}}$ nor $\mathrm{p} K_{\mathbf{a}_{1}}^{\mathrm{o}}$ and $\mathrm{p} K_{\mathrm{a}_{2}}^{\mathrm{o}}$, which, as mentioned above, are not experimentally accessible and need to be estimated. Moreover, equation (14) can be used for the prediction of $\mathrm{p} K_{\mathrm{T}}$ values of any N -monosubstituted amidine.
The ρ_{lm} and ρ_{Am} values can be taken from investigation of the corresponding series of trisubstituted amidines, since substitution at the nitrogen atom has no significant influence on these values. ${ }^{9.12 .13}$ But as substitution at a functional carbon atom has considerable influence,, ${ }^{9.10 .20 .21}$ one should be careful to use only ρ_{lm} and ρ_{Am} values obtained for amidines with the same substituents at the functional carbon atom.
When investigation of a series is impossible, the method of Katritzky et al. ${ }^{6.7}$ can be used, with certain modifications. First, as model compounds the alkylated (methylated) derivatives should be used, e.g. compounds containing the same substituent at the functional carbon atom. It was observed that replacement of the hydrogen atom at the amidine carbon atom by methyl, substituted phenyl, or other groups causes considerable changes in $\mathrm{p} K_{\mathrm{a}}$ and ρ values. ${ }^{9.10 .20 .21}$ Secondly, the $\mathrm{p} K_{\mathrm{T}}$ value should be estimated on the basis of the $\mathrm{p} K_{\mathrm{a}}$ values of two pairs of corresponding model compounds. Only in the case of N, N^{\prime}-disubstituted amidines can one pair of alkylated derivatives be used for prediction of the $\mathrm{p} K_{\mathrm{T}}$ values, since replacement of the hydrogen atom in both tautomers by an alkyl group does not influence the difference in their $\mathrm{p} K_{\mathrm{a}}$ values (e.g. $\mathrm{p} K_{\mathrm{T}}$).

According to the modified method, the $\mathrm{p} K_{\mathrm{T}}$ value can be calculated from the $\mathrm{p} K_{\mathrm{a}}$ values of the alkylated derivatives B_{1}^{\prime} and $\mathbf{B}_{2}^{\prime}\left(\right.$ i.e. $\left.\mathbf{R}_{\mathrm{x}}=\mathrm{Ph}\right)$, and of the corresponding pair $\mathbf{B}_{1}^{\prime \prime}$ and $\mathbf{B}_{2}^{\prime \prime}$.
The $\mathrm{p} K_{\mathrm{a}}$ values of the compounds B_{1}^{\prime} and B_{2}^{\prime} should obey equation (5). According to the assumption described above, the straight lines 1^{\prime} and 2^{\prime}, which represent the $\mathrm{p} K_{\mathrm{a}}$ values of compounds \mathbf{B}_{1}^{\prime} and \mathbf{B}_{2}^{\prime}, should be parallel to the straight lines 1 and 2, respectively (Figure). If the substituent R_{x} is the same alkyl group as substituent Alk in both B_{1}^{\prime} and B_{2}^{\prime}, then compounds \mathbf{B}_{1}^{\prime} and \mathbf{B}_{2}^{\prime} are identical, and thus the lines 1^{\prime} and 2^{\prime} intersect at the point which refers to the $\mathrm{p} K_{\mathrm{a}}$ of this amidine. If $\mathbf{R}_{\mathrm{x}}=\mathbf{H}$, the compounds \mathbf{B}_{1}^{\prime} and \mathbf{B}_{2}^{\prime} have the same structure as the compounds $\mathrm{B}_{1}^{\prime \prime}$ and $\mathrm{B}_{2}^{\prime \prime}$ respectively. Thus the points which

Table. $\mathrm{p} K_{\mathrm{T}}$ Values in ethanol (azeotrope) predicted for N-monosubstituted amidines on the basis of the $\mathrm{p} K_{\mathrm{a}}$ of the corresponding methyl derivatives $\mathbf{B}_{1}^{\prime}, \mathbf{B}_{2}^{\prime}, \mathbf{B}_{1}^{\prime \prime}$, and $\mathbf{B}_{2}^{\prime \prime}$ [equation (15)], and of the Hammett equation [equation (14)]

$\begin{gathered} \mathrm{R} \\ \mathrm{H} \end{gathered}$	Alk	R_{x}	$\mathrm{p} K_{\mathrm{a}}$ in 95.6% ethanol				$\mathrm{p}^{\text {T }}$		$\% \mathrm{~B}_{1}{ }^{\text {a }}$
			B_{1}^{\prime}	B_{2}^{\prime}	$B_{1}^{\prime \prime}$	$\mathrm{B}_{2}^{\prime \prime}$	eq. (15)	eq. (14)	
	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	$7.91{ }^{\text {b }}$	$8.96{ }^{\text {c }}$	$11.33^{\text {e }}$	$10.52^{f}+\log 2=10.82$	-1.6	-1.6	97.5
H		p- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	$7.75{ }^{\text {b }}$	$8.84{ }^{\text {c }}$			-1.6	-1.7	98
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	$7.63{ }^{\text {b }}$	$8.74{ }^{\text {c }}$			-1.6	-1.8	98
		Ph	$7.45{ }^{\text {b }}$	$8.66{ }^{\text {d }}$			-1.7	-1.9	98.5
		p- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	$6.84{ }^{\text {b }}$	$8.33{ }^{\text {c }}$			-2.0	-2.2	99
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	$6.50{ }^{\text {b }}$	$8.16{ }^{\text {c }}$			-2.2	-2.3	99.5
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	$5.67{ }^{8}$	$7.69{ }^{\text {c }}$			-2.5	-2.7	100
		$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	$5.27{ }^{\text {b }}$	7.55°			-2.8	-2.9	100
Me	Me	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	$8.96{ }^{\text {h }}$	$11.41{ }^{\text {i }}$	$12.81^{\text {g }}$	$12.35^{j}+\log 2=12.65$	-2.6	-2.1	99.5
		$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	$8.65{ }^{\text {h }}$	11.28^{i}			-2.8	-2.3	100
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	$8.41{ }^{\text {n }}$	$11.18^{\text {i }}$			-2.9	-2.4	100
		Ph	$8.32{ }^{\text {h }}$	11.09^{*}			-2.9	-2.5	100
		p- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	$7.65{ }^{\text {n }}$	$10.75{ }^{\text {i }}$			-3.3	-2.9	100
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$	7.25 ${ }^{\text {²}}$	10.57^{i}			-3.5	-3.1	100
		$m-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	$6.38{ }^{\text {g }}$	$10.08{ }^{\text {i }}$			-3.9	-3.7	100
		$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$	5.69 ${ }^{\text { }}$	$9.93{ }^{\text {i }}$			-4.4	-3.8	100

${ }^{a}$ Calculated from the equation $\mathrm{p} K_{\mathrm{T}}=-\log (\mathrm{x} / 1-\mathrm{x})$ where x is the molar fraction of $\mathrm{B}_{1} \cdot{ }^{b}$ As in ref. 11. ${ }^{c}$ Calculated from eq. (5) using as $\mathrm{p} K_{\mathrm{a}}^{0}$ the $\mathrm{p} K_{\mathrm{a}}$ of N^{1}, N^{2}-dimethyl- N^{2}-phenylformamidine, equal to $8.66{ }^{d}$, and $\rho_{\mathrm{Am}}=1.36 .{ }^{14}{ }^{d}$ Calculated from eq. (3) using as $\mathrm{p} K_{\mathrm{a}}^{0}$ the $\mathrm{p} K_{\mathrm{a}}$ of $N^{1}-\mathrm{methyl}$ N^{1}, N^{2}-diphenylformamidine, equal to $5.29,{ }^{22} x_{1 \mathrm{~m}}=0.62,{ }^{10}$ and as $\Delta \mathrm{p} K_{\mathrm{arm}}$ the difference in the $\mathrm{p} K_{\mathrm{a}}$ values of methylamine ($9.55{ }^{23}$) and aniline $\left(4.12^{11}\right)$. ${ }^{e}$ As in ref. 9 . ${ }^{5}$ Calculated from eq. (4) using as $\mathrm{p} K_{\mathrm{a}}^{\circ}$ the $\mathrm{p} K_{\mathrm{a}}$ of $N, N^{\prime \prime}$-diphenylformamidine, equal to $5.38,{ }^{24} \alpha_{1 \mathrm{~m}}=0.62,{ }^{10} \alpha_{\mathrm{Am}}=0.35,{ }^{22}$ and $\Delta \mathrm{p} K_{\mathrm{apa}}{ }^{d}{ }^{g}$ As in ref. 24. ${ }^{h}$ As in ref. $10 .^{i}$ Calculated from eq. (5) using as $\mathrm{p} K_{\mathrm{a}}^{0}$ the $\mathrm{p} K_{\mathrm{a}}$ of N^{1}, N^{2}-dimethyl- N^{2}-phenylacetamidine, equal to 11.09^{j}, and $\rho_{\mathrm{Am}}=1.42 .{ }^{13}{ }^{j}$ Calculated from eq. (4) using as $\mathrm{p} K_{\mathrm{a}}^{0}$ the $\mathrm{p} K_{\mathrm{a}}$ of N, N^{\prime}-diphenylacetamidine, equal to $6.97,{ }^{5}{ }^{5} \alpha_{\mathrm{lm}}=0.76,{ }^{10}{ }^{10} \alpha_{\mathrm{Am}}=0.23$, ${ }^{24}$ and $\Delta K_{\mathrm{a} \mathrm{m}}{ }^{d}$. ${ }^{\mathrm{k}}$ Calculated from eq. (3) using as $\mathrm{p} K_{\mathrm{a}}^{\mathrm{o}}$ the $\mathrm{p} K_{\mathrm{a}}$ of N^{1}-methyl- N^{1}, N^{2}-diphenylacetamidine, equal to $6.96,{ }^{13}{ }_{\alpha_{1 \mathrm{~m}}}=0.76$, ${ }^{10}$ and $\Delta \mathrm{p} K_{\mathrm{apn}}{ }^{d}$.

refer to the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{B}_{1}^{\prime \prime}$ and $\mathrm{B}_{2}^{\prime \prime}$ are placed on the lines 1^{\prime} and 2^{\prime}, respectively.

As shown (Figure), the difference between the $\mathrm{p} K_{\mathrm{a}}$ values of tautomers B_{1} and $\mathrm{B}_{2}\left(\mathrm{p} K_{\mathrm{T}}\right)$ is not equal to the difference in the $\mathrm{p} K_{2}$ values of compounds B_{1}^{\prime} and B_{2}^{\prime}, as was assumed in the original method of Katritzky et al., ${ }^{6.7}$ but can be obtained by subtraction of the difference in the $\mathrm{p} K_{\mathrm{a}}$ values of compounds $\mathrm{B}_{1}^{\prime \prime}$ and $\mathrm{B}_{2}^{\prime \prime}$ from the difference in the $\mathrm{p} K_{\mathrm{a}}$ values of compounds B_{1}^{\prime} and B_{2}^{\prime} [equation (15)], where $\mathrm{p} K_{\mathrm{a}_{2}}^{\prime \prime}$ is the microscopic $\mathrm{p} K_{\mathrm{a}}$ of

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{T}}=\mathrm{p} K_{\mathrm{a}_{1}}^{\prime}-\mathrm{p} K_{\mathrm{a}_{2}}^{\prime}+\mathrm{p} K_{\mathrm{a}_{2}}^{\prime \prime}-\mathrm{p} K_{\mathrm{a}_{1}}^{\prime \prime} \tag{15}
\end{equation*}
$$

symmetrically substituted N, N^{\prime}-dialkylamidine ($\mathrm{B}_{2}^{\prime \prime}$). Thus it is about $\log 2$ higher than the measured $\mathrm{p} K_{\mathrm{a}}{ }^{5}$

Therefore, the $\mathrm{p} K_{\mathrm{T}}$ values determined for some N-monosubstituted acetamidines ${ }^{6.7}$ as the difference in the $\mathrm{p} K_{\mathrm{a}}$ values of one pair of model compounds are incorrect. The $\mathrm{p} K_{\mathrm{T}}$ values presented in the paper ${ }^{7}$ need to be reduced. Using a similar analysis to that above it can be easily shown that the correction to $\mathrm{p} K_{\mathrm{T}}$ is equal to the difference of the $\mathrm{p} K_{\mathrm{a}}$ of N^{1}, N^{1}-dimethylacetamidine and of amino-tautomer of N-methylacetamidine. In the case of compounds studied in the original paper, ${ }^{6}$ an additional erroneous assumption was made, in that compounds containing different substituents at the functional carbon atom
were used as models, and thus the error in $\mathrm{p} K_{\mathrm{T}}$ determination cannot be estimated.

The $\mathrm{p} K_{\mathrm{a}}$ values of individual tautomers can be obtained on the basis of equations (1) and (12), and the estimated $\mathrm{p} K_{\mathrm{T}}$ and the measured $\mathrm{p} K_{\mathrm{a}_{\mathrm{m}}}$ of tautomeric mixture.

The above presented methods have been applied to the prediction of $\mathrm{p} K_{\mathrm{T}}$ values for several N-aryl-formamidines and -acetamidines. The $\mathrm{p} K_{\mathrm{a}}$ values have been estimated (Table) on the basis of the $\mathrm{p} K_{\mathrm{a}}$ values of corresponding methyl derivatives $\mathbf{B}_{1}^{\prime}, \mathbf{B}_{2}^{\prime}, \mathbf{B}_{1}^{\prime \prime}$, and $\mathbf{B}_{2}^{\prime \prime}$ [equation (15)], and calculated from the Hammett equation [equation (14)], using $\rho^{\circ}=1.49,{ }^{9}$ $\sigma_{\mathrm{T}}=1.24$ for formamidines $\left(\rho_{\mathrm{Im}}=2.60,{ }^{10} \rho_{\mathrm{Am}}=1.36{ }^{14}\right)$, and $\sigma_{\mathrm{T}}=1.66$ for acetamidines $\left(\rho_{\mathrm{Im}}=3.08,{ }^{10} \rho_{\mathrm{Am}}=1.42^{13}\right)$, and can be seen to be similar. The error in the $\mathrm{p} K_{\mathrm{T}}$ prediction does not exceed $0.5 \mathrm{p} K_{\mathrm{T}}$ units. Moreover, the results obtained provide confirmation of literature qualitative and quantitative conclusions ${ }^{2-4.6 .7 .25}$ that N -arylamidinesexist predominantly as the imino-tautomer B_{1}, and thus the concentration of the amino-tautomer \mathbf{B}_{2} can be undetectable.

Acknowledgements

The author is indebted to Professor T. M. Krygowski for enjoyable discussions, and to Professor J. Oszczapowicz for encouragement and useful discussions.

References

1 D. D. Perrin, B. Dempsey, and E. P. Serjeant, 'pKa Prediction for Organic Acids and Bases,' Chapman and Hall, London, 1981.
2 R. L. Shriner and F. W. Neumann, Chem. Rev., 1944. 35. 351.
3 G. Schwenker and K. Bösl, Pharmazie, 1969, 24, 653.
4 G. Häfelinger in 'The Chemistry of Amidines and Imidates,' ed. S. Patai, J. Wiley, London, 1975, p. 53.
5 E. Raczyñska and J. Oszczapowicz, Tetrahedron, 1985, $41,5175$.
6 S.-O. Chua, M. J. Cook, and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 2, 1974, 546.
7 M. L. Cook, A. R. Katritzky, and S. Nadji, J. Chem. Soc., Perkin Trans. 2, 1976, 211.

8 E. J. King, 'Acid-Base Equilibria,' Pergamon Press, Oxford, 1965, p. 13 and 218.

9 E. D. Raczyńska, Ph.D. Thesis, Warsaw University, 1984.
10 J. Oszczapowicz and E. Raczyńska, J. Chem. Soc., Perkin Trans 2, 1984, 1643.
11 J. Oszczapowicz and E. Raczyńska, Pol. J. Chem., 1983, 57, 419.
12 J. Oszczapowicz, E. Raczyńska, and I. Barecka, Pol. J. Chem., 1985, 59, 387.
13 E. Raczyńska, J. Oszczapowicz, and M. Walczak, J. Chem. Soc., Perkin Trans. 2, 1985, 1087.
14 J. Oszczapowicz, J. Osek, and R. Orliński, Pol. J. Chem., 1980, 54, 1191.

15 J. Sevčí, Chem. Zvesti, 1972, 26, 49.
16 B. V. Passet, G. N. Kulbitskii, N. A. Kalashnikova, and T. I. Voropaeva, Zh. Org. Khim., 1972, 8, 1246.
17 J. Sevčik and F. Grambal in 'The Chemistry of Amidines and Imidates,' ed. S. Patai, J. Wiley, London, 1975, p. 565.

18 J. D. Halliday, E. A. Symons, and P. E. Bindner, Can. J. Chem., 1978, 56, 1470.
19 E. V. Borisov, D. N. Kravtsov, A. S. Peregudov, and E. I. Fedin, Izv. Akad, Nauk SSSR, Ser. Khim., 1980, 2151.
20 J. Oszczapowicz, E. Raczyńska, and T. Pawlik, Pol. J. Chem., 1984, 58. 117.

21 J. Oszczapowicz, W. Krawczyk, and J. Osek and E. Raczyńska, Pol. J. Chem., in the press.

22 E. Raczyńska, J. Oszczapowicz and M. Wojtkowska, Pol. J. Chem., 1985, 59, 945.
23 M. Mizutani, Z. Phys. Chem., 1925, 116, 350.
24 E. D. Raczyńska, unpublished work.
25 For reviews see ref. 6.

[^0]: * Present address: Institute of General Chemistry, Warsaw Agricultural University, 02-528 Warsaw, Poland

